A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 11
Nov.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
C.-C. Wang, Y.-L. Wang, and L. Jia, “Multi-USV formation collision avoidance via deep reinforcement learning and COLREGs,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2349–2351, Nov. 2024. doi: 10.1109/JAS.2023.123846
Citation: C.-C. Wang, Y.-L. Wang, and L. Jia, “Multi-USV formation collision avoidance via deep reinforcement learning and COLREGs,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2349–2351, Nov. 2024. doi: 10.1109/JAS.2023.123846

Multi-USV Formation Collision Avoidance via Deep Reinforcement Learning and COLREGs

doi: 10.1109/JAS.2023.123846
More Information
  • loading
  • [1]
    C.-C. Wang, Y.-L. Wang, Q.-L. Han, and Y.-K. Wu, “MUTS-based cooperative target stalking for a multi-USV system,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1582–1592, 2023. doi: 10.1109/JAS.2022.106007
    [2]
    Y. Zhao, Y. Ma, and S. Hu, “USV formation and path-following control via deep reinforcement learning with random braking,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5468–5478, 2021. doi: 10.1109/TNNLS.2021.3068762
    [3]
    H. Shen, G. Wen, Y. Lv, J. Zhou, and L. Wang, “USV parameter estimation: Adaptive unscented Kalman filter-based approach,” IEEE Trans. Industr. Inform., vol. 19, no. 6, pp. 7751–7761, 2023. doi: 10.1109/TII.2022.3202521
    [4]
    L. Ma, Y.-L. Wang, and Q.-L. Han, “Cooperative target tracking of multiple autonomous surface vehicles under switching interaction topologies,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 673–684, 2023. doi: 10.1109/JAS.2022.105509
    [5]
    G. Wen, X. Fang, J. Zhou, and J. Zhou, “Robust formation tracking of multiple autonomous surface vessels with individual objectives: A noncooperative game-based approach,” Control Eng. Pract., vol. 119, p. 104975, 2022. doi: 10.1016/j.conengprac.2021.104975
    [6]
    C. L. Galimberti, L. Furieri, L. Xu, and G. Ferrari-Trecate, “Hamiltonian deep neural networks guaranteeing nonvanishing gradients by design,” IEEE Trans. Automat. Contr., vol. 68, no. 5, pp. 3155–3162, 2023. doi: 10.1109/TAC.2023.3239430
    [7]
    Z. Chen, L. Deng, B. Wang, G. Li, and Y. Xie, “A comprehensive and modularized statistical framework for gradient norm equality in deep neural networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 13–31, 2022. doi: 10.1109/TPAMI.2020.3010201
    [8]
    M. O. Turkoglu, S. D’Aronco, J. D. Wegner, and K. Schindler, “Gating revisited: Deep multi-layer rnns that can be trained,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 8, pp. 4081–4092, 2022.
    [9]
    T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. New York, USA: John Wiley & Sons, 2011.
    [10]
    R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” in Proc. Advances in Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6379–6390.
    [11]
    S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in Proc. Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 1587–1596.
    [12]
    X. Xu, Y. Lu, X. Liu, and W. Zhang, “Intelligent collision avoidance algorithms for USVs via deep reinforcement learning under COLREGs,” Ocean Eng., vol. 217, p. 107704, 2020. doi: 10.1016/j.oceaneng.2020.107704

Catalog

    通讯作者: 陈斌, [email protected]
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (155) PDF downloads(62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return